
International Journal of Heat and Mass Transfer 48 (2005) 681–689

www.elsevier.com/locate/ijhmt
Equilibrium Eulerian approach for predicting the thermal field
of a dispersion of small particles

Jim Ferry a,1, S. Balachandar b,*

a Center for Simulation of Advanced Rockets, University of Illinois, Urbana–Champaign, Urbana, IL 61801, USA
b Department of Theoretical and Applied Mechanics, University of Illinois, Urbana–Champaign, 216 Talbot Laboratory, MC-262,

104 South Wright Street, Urbana, IL 61801 2983, USA

Received 30 January 2004; received in revised form 11 June 2004

Available online 11 November 2004
Abstract

The equilibrium Eulerian method [J. Ferry, S. Balachandar, A fast Eulerian method for disperse two-phase flow, Int.

J. Multiphase Flow 27 (7) (2001) 1199–1226] provides an accurate approximation to the velocity field of sufficiently

small dispersed particles in a turbulent fluid. In particular, it captures the important physics of particle response to tur-

bulent flow, such as preferential concentration and turbophoresis. It is therefore employed as an efficient alternative to

solving a PDE to determine the particle velocity field. Here we explore two possible extensions of this method to deter-

mine the particle temperature field accurately and efficiently, as functions of the underlying fluid velocity and temper-

ature fields. Both extensions are theoretically shown to be highly accurate for asymptotically small particles. Their

behavior for finite-size particles is assessed in a DNS of turbulent channel flow (Res = 150) with a passive temperature

field (Pr = 1). Here it is found that although the order of accuracy of the two extensions is the same, the constant factor

by which one is superior to the other can be quite large, so the less accurate extension is appropriate only in the case of a

very small mechanical-to-thermal response time ratio.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

When particles or droplets are advected in a turbu-

lent flow the fluid conditions seen by the particles/drop-

lets change over time and as a result their temperature,
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in general, will differ from that of the local surrounding

fluid. To calculate the temperature of the disperse med-

ium a variety of approaches have been used. For very

large particles, it is necessary to solve for the tempera-

ture distribution within the particle, and in the region

of fluid surrounding it. In this case it is often assumed

that the temperature distribution within the particle is

radially symmetric. When a particle is not as large, its

temperature can be represented by a single value. In this

Lagrangian–Eulerian approach, the particle temperature

is evolved by assuming that there exists a representa-

tive fluid temperature at the particle position and a
ed.
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Nomenclature

C specific heat

d particle diameter

D/Dt time derivative following the fluid

(o/ot + u Æ $)
d/dt time derivative following a particle

(o/ot + vÆ$)
h channel half-height

k thermal conductivity

p pressure

Pr Prandtl number

Re Reynolds number

T temperature

t time

u fluid velocity

v particle velocity

x streamwise distance

y spanwise distance

z wall-normal distance

Greek symbols

l dynamic viscosity

q density

s particle response time

Subscripts and superscripts

e equilibrium Eulerian quantity

ee equilibrium Eulerian with equilibrium Eule-

rian velocity

ef equilibrium Eulerian with fluid velocity

ep equilibrium Eulerian with (exact) particle

velocity

f fluid quantity

p (exact) particle quantity

T thermal

s wall-friction-based

+ wall units
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characteristic conduction time between the particle and

the surrounding fluid. When particles are so numerous

that it becomes impractical to track each one, a contin-

uum assumption is typically applied. Rather than evolv-

ing individual particles, one evolves a particle number

density. It is then necessary to model the velocity and

temperature of this particle continuum. A simple solu-

tion is to assume that the velocity and temperature of

the particle field is equal to that of the fluid. This proce-

dure is only valid in the case of extremely small particles,

however. When accurate values are required, the tradi-

tional approach is to use the Eulerian–Eulerian method,

where an additional system of PDEs (partial differential

equations) is solved for the dispersed phase velocity and

temperature fields.

There are a number of difficulties with the Eulerian–

Eulerian method: (a) it is costly to evolve systems of

PDEs, particularly for polydisperse particulate systems;

(b) the boundary conditions for these PDEs are not well

understood; (c) because of the time-step limitations im-

posed by the momentum and thermal response times

of the particle, the equations to be solved are often stiff;

and (d) it is necessary to add spurious diffusion terms to

stabilize the PDEs for particle velocity and temperature.

Of course, these difficulties may all be avoided by simply

setting the particle field velocity and temperature to that

of the fluid, but in doing so important physics is ne-

glected. For example, particles evolved using the fluid

velocity do not preferentially concentrate [1,2] or exhibit

turbophoretic migration [3] towards or away from the

walls.

On the other hand, the equilibrium Eulerian method

captures the essential physics represented by the devia-
tion of particle velocity from the fluid velocity, without

requiring additional PDEs to be solved [4,5]. In this meth-

od the dispersed phase velocity field is explicitly expressed

as an expansion in terms of the local fluid velocity field

and its spatial and temporal derivatives, with the particle

time-scale as the small parameter [6,7]. This expansion al-

lows for the dispersed phase velocity field to be different

from the local fluid velocity and thus enables essential

physics, such as preferential concentration and turbo-

phoresis, to be represented. Rani and Balachandar [8]

have tested the equilibrium Eulerian approach by advect-

ing a passive particulate concentration field in isotropic

turbulence over long periods of time and comparing the

results with the corresponding Lagrangian particulate

distribution. Meynet and Dupays [9] compared the equi-

librium Eulerian approach to the standard Eulerian–

Eulerian method in a flow within a solid rocket motor,

and found good agreement between the velocity fields

computed. They also tested what would seem like a rea-

sonable extension of the equilibrium Eulerian method

to temperature field, but observed some disagreement

with the results of the Eulerian–Eulerian method.

In this paper we will consider systematic extensions

of the equilibrium Eulerian approach to include the ther-

mal field as well. Three possible variants of the equilib-

rium Eulerian method will be identified and investigated

in detail. These variants will be tested in a direct numer-

ical simulation (DNS) of a passive temperature field ad-

vected by turbulent channel flow, with a one-way

coupled, Lagrangian–Eulerian particle model. It is

found that the method used by Meynet and Dupays

[9] is not sufficient, but that excellent results are obtained

with a carefully implemented variant.
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2. The equilibrium Eulerian method for thermal fields

The equation of motion for a single spherical particle

immersed in a fluid is rather complex, even in the low

Reynolds number regime, where the particle-based

Reynolds number is much less than 1, and the particle

much smaller than the Kolmogorov scale of the fluid

[10,11]. This equation may be used to model the

behavior of a system of particles when the particle con-

centration is low enough that particle–fluid and particle–

particle interactions can be neglected.

Here the method will be presented for the simple case

of particle motion influenced only by drag. The neglect

of other added-mass and history forces is appropriate

for cases with a large particle-to-fluid density ratio.

The equation of motion is then

dv
dt

¼ u� v
s

; ð1Þ

where u denotes the fluid velocity at particle location;

v, the particle velocity; d/dt, a time derivative following

the particle; and s, the particle response time, which is

defined as follows:

s ¼
qpd

2

18lf

: ð2Þ

In this equation, lf is the dynamic viscosity of the

fluid, qp is the density of the particle material, and d is

the particle diameter.

As noted by various authors [6,7], the particle velo-

city in (1) may be expanded formally in powers of s.
Such an expansion is valid for sufficiently small s, since
the particle velocity field then entrains exponentially

quickly to a unique function of the fluid velocity field

(and its spatial and temporal derivatives), independent

of its initial condition [4]. In other words, there exists

an equilibrium particle velocity field to which all solu-

tions to (1) will entrain to provided s is small. The equi-

librium Eulerian expansion to particle velocity to O(s)
accuracy can be expressed as

ve ¼ u� s
Du

Dt
: ð3Þ

Here D/Dt denotes a time derivative following the

fluid.

The energy equation for the evolution of particle

temperature Tp can be written as [12]

dT p

dt
¼ T f � T p

sT
: ð4Þ

Here Tf is the fluid temperature, and sT is the particle�s
thermal response time

sT ¼
Cpqpd

2

12kf
; ð5Þ
where kf is the thermal conductivity of the fluid, and Cp

is the specific heat of the particle.

To derive an equilibrium expansion for particle tem-

perature based on (4), one begins by rewriting it as

T p ¼ T f � sT
dT p

dt
: ð6Þ

The term dTp/dt can then be replaced by substituting

the expression in (6) for it, resulting in the expansion

T p ¼ T f � sT
dT f

dt
þOðs2TÞ: ð7Þ

Let Tep denote the first-order truncation of this series

T ep ¼ T f � sT
dT f

dt
: ð8Þ

In this equation the convective derivative dTf/dt fol-

lows the exact particle velocity rather than some approx-

imation to it.

To obtain a usable method, however, the convective

derivative dTf/dt in (8) must be approximated by a deriv-

ative following a velocity that can be computed. Using

the approximation v = u + O(s), one obtains

T ef ¼ T f � sT
DT f

Dt
ð9Þ

as a possible method, and using v = ve + O(s2), one

obtains

T ee ¼ T f � sT
oT f

ot
þ ve � $T f

� �
: ð10Þ

The order of accuracy of the above approximations

to Tp are

T p ¼ T f þOðsTÞ; ð11Þ

T p ¼ T ef þOðssTÞ þOðs2TÞ; ð12Þ

T p ¼ T ee þOðs2sTÞ þOðs2TÞ; ð13Þ

T p ¼ T ep þOðs2TÞ: ð14Þ

For a fixed value of s, the methods Tef and Tee are

only first-order accurate in sT, which is the same as sim-

ply using the fluid velocity Tf. However, it is more useful

to consider s to be a fixed multiple of sT because their

ratio depends primarily on the material properties of

the particle and fluid media

s
sT

¼ 2kf
3Cplf

ð15Þ

At low Reynolds numbers the value of this ratio for

water droplets, glass particles, and copper particles, each

immersed in cool air are 0.23, 1.13, and 2.44, respec-

tively. Therefore, if the materials used for the particle

and fluid are considered constant, both Tef and Tee can

be considered second-order.
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3. Description of the simulation

The accuracy of the three equilibrium methods for

computing the particle temperature field, Tef, Tee, and

Tep, and of the simplest approximation of setting the

particle temperature to be the local fluid temperature,

Tf, are assessed by comparing these values to the exact

particle temperature, Tp, for particles evolved in a turbu-

lent flow. Here, the term exact refers to the temperature

obtained from the Lagrangian–Eulerian method,

although this itself is only another (albeit higher fidelity)

model.

We consider the problem of pressure-driven, turbu-

lent flow between two infinite parallel plates. Here the

two plates are maintained at different, but constant, tem-

peratures. The turbulent channel flow with the associ-

ated turbulent thermal field is chosen as the test bed

for evaluating the above equilibrium approximations.

The flow field and the passive thermal field are evolved

according to the following continuity, momentum and

energy equations

$ � u ¼ 0; ð16Þ

Du

Dt
¼ �$p þ 1

Res
Du; ð17Þ

DT f

Dt
¼ 1

PrRes
DT f : ð18Þ

The geometric and physical parameters for this flow

have been chosen to match the numerical experiments

of Piller et al. [13]. The Reynolds number based on the

wall friction velocity and the channel half-height is

Res = 150. The dimensions of channel are 1920 ·
300 · 960 wall units in the streamwise (x), wall-normal

(y), and spanwise (z) directions, respectively. The DNS

employs a pseudospectral algorithm on a grid of size

192 · 128 · 192, fully de-aliased in the x and z direc-

tions. The effective grid resolution is therefore

128 · 128 · 128. The velocity and thermal fields are

evolved with a third-order Runge–Kutta time stepping

method. The temperature field is constant at the top

and bottom walls: T = 1 at y+ = 0, and T = �1 at

y+ = 300. The Prandtl number is chosen to be the largest

value considered by Piller et al. [13]: Pr = 1, and the

mean and rms temperature fluctuations obtained agree

with their results.

In this flow, twenty ensembles of 200,000 particles

each were evolved, representing each combination of

four response times (s+ = 0, 0.03, 0.1, and 0.3), and five

thermal response times (sþT ¼ 0:03, 0.06, 0.1, 0.2, and

0.3). The chosen values for sþT and s+ (other than

s+ = 0) span the range 0.1 6 s/sT 6 10, which is consist-

ent with typical values for liquid or solid spheres in air at

standard temperature and pressure (STP). For example,

as mentioned above, the value of s/sT is 0.23 for water
droplets immersed in air. The values of s+ chosen corre-

spond to water droplet diameters of 0, 1.76, 3.13, and

5.57lm in the case of air (at STP) in a channel with

half-height h = 1cm. These diameters are well below

the computational cell size except in the case of a cell

bordering the wall, whose wall-normal extent is

3.06lm. All values of s+ considered are small enough

to lie in the regime in which the Maxey–Riley (or Gatig-

nol) equation is valid: the particle-based Reynolds num-

ber is less than 0.07 for all values of s+ considered,

whereas the ratio of the particle diameter to Kolmogo-

rov length scale is everywhere less than 0.06. These val-

ues are for the case of water droplets, and are even lower

for denser substances. The simplification of the Maxey–

Riley equation to the Stokes-law equation (1) is valid be-

cause the particle-to-fluid density ratio is very high: 816

for the case of water in air. Similarly, the use of (4) is

valid because of the small ratio of particle diameter to

Kolmogorov length scale allows the thermal transfer

to be viewed as a spatially uniform process, and the par-

ticle Reynolds number is small enough that the Nusselt

number can be taken to be the constant 2. Finally, for

the series expansion employed by the equilibrium Eule-

rian method to be accurate, one requires that s and sT
be smaller than the time scale of any eddy which acts

on a particle. The Kolmogorov time scale is the smallest

possible of such time scales, and in this case the largest

value of s or sT used is less than 15% of it everywhere

in the channel.

The velocity and temperature of the particles are

evolved according to (1) and (4). The particle velocity

is then used to advance the particle position within the

channel. Using periodicity, any particle exiting the com-

putational domain is reintroduced into the channel. Par-

ticles colliding with the wall bounce elastically. This is

not particularly realistic, but an accurate representation

of near-wall effects is beyond the scope of this study.

A time step in wall units of Dt+ = 0.2 was used to

evolve the flow to a fully developed, statistically steady

state after which particles are introduced into the flow.

Although the above time-step was adequate for accurate

resolution of all flow scales, a smaller time step of

Dt+ = 0.02 was used to accommodate the case of small

particles with s+ and sþT equal to 0.03 in order to ensure

numerical stability in the time integration of their equa-

tions of motion. (Note that this time-step restriction is,

in fact, one of the very problems that the equilibrium

Eulerian method is designed to remedy.) Particles were

evolved for 1000 time steps to adjust to the flow, and

then for another 20,000 time steps. Statistics were col-

lected every 100th step. These Lagrangian results for

the particles will be considered exact, and they form

the benchmark against which other approximations will

be compared.

Interpolation of quantities to particle locations is

performed via Hermite interpolation [14]. This method
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was desired not only for its accuracy, but, more impor-

tantly, for its smoothness (continuity of derivatives

across cell boundaries). In the Lagrangian approach

for evolving (1) and (4) the fluid velocity and tempera-

ture fields must be interpolated from the computational

grid to the particle position. In practical application of

equilibrium Eulerian approach no such interpolation is

required, since the computation will remain entirely on

the grid. In the present work, however, in order to eval-

uate their accuracy, the equilibrium Eulerian methods

will be applied at the Lagrangian particle locations

and this will require interpolation. For proper compari-

son the interpolation for Tp in the Lagrangian approach

and for Tee, Tep, Tef in the equilibrium Eulerian ap-

proaches must be performed carefully and consistently.

Several points related to interpolation are discussed fur-

ther in Appendix A.
4. Results

The s+ = 0 case provides a convenient baseline be-

cause u = ve = v, so there is no distinction between the

three methods used to compute the equilibrium particle

temperature. In this case the notation Te is used, since

Te = Tef = Tee = Tep for s = 0. Note, however, that in

practice s ! 0 implies sT ! 0. In the case of inertial par-

ticles (s+ > 0), Tef, Tee, and Tep will be distinct, in

general.

Fig. 1 is a contour plot of the error Te � Tp in

approximating the particle temperature with the equilib-

rium temperature versus the error Tf � Tp in approxi-

mating the particle temperature with the local fluid
Fig. 1. Comparison of errors in Te vs. Tf for fluid particles with

sþT ¼ 0:03.
temperature, for the case s+ = 0, sþT ¼ 0:03. The data is

collected over the x–z plane in a narrow region about

y+ = 20; temperature is normalized by the standard devi-

ation of the fluid temperature fluctuation T 0
f at y

+ = 20;

and each contour line represents a factor of two increase

in probability density.

Fig. 1 indicates that the equilibrium Eulerian method

for temperature captures the exact particle temperature

much better than its approximation as the local fluid

temperature does sþT ¼ 0:03. Fig. 2 shows that the corre-

sponding result for sþT ¼ 0:3, and it is evident that the

equilibrium approximation still yields significant

improvement over the local fluid temperature. The rms

error of equilibrium Eulerian approximation is about

20% of the rms error when using the fluid temperature.

From the location of the center the distribution it can

be seen that for both sþT ¼ 0:03 and sþT ¼ 0:3 approxi-

mating the particle temperature with Tf results in a

marked mean error, while the corresponding mean error

is quite small for the equilibrium approximation. The

contour plots indicate that the temperature statistics

are similar to the velocity statistics presented in [4].

Figs. 1 and 2 indicate that the errors in Tf and Te are

statistically uncorrelated. This is largely true in the iner-

tial case (s+ > 0) as well, so the contour plots may be re-

placed by mean and rms statistics for each method. Fig.

3 shows the mean and rms of the error in equilibrium

approximation Tep plotted for against the nondimen-

sional particle thermal response time, sþT . Also plotted

for reference is the corresponding mean and rms error

in approximating the particle temperature with the local

fluid temperature. The results are plotted for only the

smallest and largest values of s+ considered (0 and 0.3)
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Fig. 2. Comparison of errors in Te vs. Tf for fluid particles with

sþT ¼ 0:3.
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as the results are clearly insensitive to s+. The errors for
Tf are proportional for sT, but those for Tep are propor-

tional to s2T, as expected. Over the entire range of sþT con-

sidered, the mean error in Tep is more than two orders of

magnitude lower than that in Tf. The corresponding dif-

ference in rms error is somewhat lower at one order of

magnitude.

The equilibrium approximation using the exact con-

vective derivative of fluid temperature following the par-

ticle, as in (8), was possible in the present simulation.

However, in practical application of equilibrium Eule-

rian approach, the exact particle velocity will not be

available and as a result the convective derivative of
fluid temperature following the particle must be approx-

imated. In other words, although Tep is the best possible

first-order equilibrium approximation to particle tem-

perature, in practice it must be replaced by either Tef

or Tee. Fig. 4 shows the mean and rms error for Tef.

Again the error for Tf is plotted for comparison. It is

clear that the equilibrium approximation for particle

temperature, even with a crude approximation to con-

vective derivative, provides substantial improvement

over Tf.

The asymptotic behavior of Tef depends on the value

of s+, however. In Fig. 4(a), even the smallest inertial

particle (s+ = 0.03) considered fails to perform as well
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as the s+ = 0 particles. For sþT 	 sþ the mean error de-

creases as sþ2
T , but for sþT K sþ, only first order behavior

is observed. These asymptotics are consistent with the

order of accuracy indicated in (12). The rms exhibits a

similar behavior, but less drastically.

The mean and rms error for Tee are shown in Fig. 5.

The error compares well with those shown in Fig. 3 for

small values of s+. When the particle time scale increases

much beyond the corresponding thermal time scale, a

slight increase in both the mean and rms errors can be

observed. But overall it can be seen that over the entire

parametric range considered Tee provides nearly as good

an approximation to the particle temperature as Tep.
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Fig. 5. (a) Mean and (b) RMS errors in Tf and Tee.
There results are similar to those presented in [4] for

velocity statistics. In that work, a further set of tests

(which have no thermal analog) were carried out in

which particles were allowed to move under the velocity

prescribed by the equilibrium Eulerian method. The sta-

tistics of the resulting particle distribution showed a

remarkable fidelity to the exact particle fields—results

even better than what would be expected by considering

the rms errors only. Rather, it was the small mean errors

that accounted for the high fidelity. In this study the

mean temperature statistics are better than those of the

rms, just as in the velocity case.
5. Summary

The equilibrium Eulerian method is an efficient way

to compute the velocity of sufficiently small particles in

a turbulent flow. The authors have previously shown

[4] that this method represents the particle velocity with

O(s2) accuracy in turbulent flow. Two methods of gener-

alizing the method to approximate the particle tempera-

ture field Tp have been explored in the current work,

given by the formulas for Tef and Tee in (9) and (10).

These are compared to the accuracy of using the fluid

velocity Tf as an estimator, and to the ideal, but uncom-

putable, equilibrium method Tep given in (8). The differ-

ence between the three equilibrium methods Tef, Tee, and

Tep is the velocity used to compute the convective deriv-

ative of temperature. The three methods use the fluid

velocity, equilibrium Eulerian velocity, and exact parti-

cle velocity, respectively. It is found that the method

Tef does not suffice, in general. Fig. 4a highlights the

degradation in the accuracy of Tef as s+ increases. On

the other hand, Fig. 5 shows that Tee is an excellent

approximation to the particle temperature, performing

nearly as well as Tep. Although Tee is somewhat more

complicated, with the correct implementation it would

not be particularly costly because the equilibrium Eule-

rian velocity it requires will be anyway computed in

order to obtain the particle velocity field.
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Appendix A. Interpolation

The exact representation of the velocity and temper-

ature fields in a spectral simulation is given by a sum of

sinusoidal functions. To compute the exact particle

velocities and temperatures as the sum of these sinusoids
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at a given instant requires work proportional to the

product of the number of grid points and the number

of particles, which is far too large to be practical. There-

fore an efficient interpolation method is required. This

appendix comments on the role of a chosen method�s
accuracy and smoothness, and emphasizes the need for

consistent calculations in Lagrangian–Eulerian studies.

The method chosen in this study is total Hermite

interpolation. To interpolate a function f(x,y,z) with

this method, one first locates the grid point (x0,y0,z0)

such that x0 6 x < x1, y0 6 y < y1, z0 6 z < z1. Define

Dx = x1 � x0, x = (x � x0)/Dx, and similarly for the y-

and z-directions. Then define the following basis

functions:

H 0
0ðxÞ ¼ ð1� xÞ2ð1þ 2xÞ;

H 1
0ðxÞ ¼ ð1� xÞ2x; Hp

1ðxÞ ¼ ð�1ÞpHp
0ð1� xÞ: ðA:1Þ

The interpolated function FTHI(x,y,z) is a linear

combination of the values of f and all its first-order

mixed partial derivatives at the eight surrounding

gridpoints

F THIðx; y; zÞ ¼
X1

i;j;k;p;q;r¼0

Hp
i ðxÞHq

j ðyÞHr
kðzÞf ðp;q;rÞðxi; yj; zkÞ


 ðDxÞpðDyÞqðDzÞr;
ðA:2Þ

where f (p,q,r) is the result of taking p, q, and r derivatives

of f in the x-, y-, and z-directions, respectively.

Hermite interpolation is fourth-order accurate, but it

is important not to confuse order of accuracy with accu-

racy itself. The order of accuracy is a measure of how

well a method interpolates low-wave-number compo-

nents of a field, but Balachandar has shown [14] that

the error for turbulent fields is dominated by the high-

wave-number components. In this regard, Hermite inter-

polation is excellent, much better than sixth-order

Lagrangian interpolation, for example.

Interpolation is a linear operator, so it commutes

with summation and with temporal derivatives. That

is, one gets the same results whether one interpolates a

sum of terms, or interpolates each term individually

and then sum. Products and spatial derivatives are an-

other matter. To obtain values of the equilibrium Eule-

rian temperature at particle positions requires the

interpolation of DTf/Dt. There are various ways to com-

pute this quantity at a particle location. Three of which

are listed below for the same term u3oTf/oz that appears

in DTf/Dt

• Compute u3oTf/oz on the grid, then interpolate it;

• Interpolate u3 and oTf/oz individually, then multiply

the results; or

• Interpolate u3 directly and multiply it by the result of

taking the z-derivative of (A.2) (with f = Tf).
The first method gives the most accurate approxima-

tion of the projection of u3oTf/oz onto the spectral basis;

the second gives the most accurate approximation of

u3oTf/oz prior to projection. The third method is less

accurate than the other two, but it is the correct choice

for this study.

This may seems paradoxical but note that the

Lagrangian dynamics of a particle evolved in an interpo-

lated field are a function of that interpolated field, not of

the original field. In a Lagrangian–Eulerian simulation,

the only field which it is appropriate to study is the inter-

polated field. This is the only field the particles perceive.

For example, if one wished to study the preferential con-

centration of particles with respect to an estimator of the

divergence of the particle velocity field, then it would be

important to recognize that even in the limit s ! 0,

where the particle velocity approaches the fluid velocity,

the divergence may not approach zero. The interpolated

fluid velocity field may not be divergence-free, unless it

incorporates all three components of velocity at once.

In the current study, various methods of approximat-

ing particle temperature are employed, and they are

based on the spatial and temporal derivatives of the field

perceived by the particle. It would therefore be mis-

guided to attempt to minimize the error between the

value of u3oTf/oz at a particle location and the exact,

spectral value of that quantity. Instead, one just com-

putes u3oTf/oz exactly, based on the interpolated field,

and therefore introduces no interpolation error in the

comparison between the evolved quantity Tp and di-

rectly computed quantities such as Tef. It is simple to

implement the computation of the derivatives of an

interpolated field based on the basis functions Hp
i in

(A.1). For example,

o

oz
F THIðx; y; zÞ ¼

X1

i;j;k;p;q;r¼0

Hp
i ðxÞHq

j ðyÞ


 d

dz
Hr

kðzÞf ðp;q;rÞðxi; yj; zkÞ


 ðDxÞpðDyÞqðDzÞr�1: ðA:3Þ

The choice of Hermite interpolation can now be ex-

plained. The main reason for this choice is not its accu-

racy, but its smoothness. Hermite interpolation

guarantees the continuity of first derivatives across cell

boundaries. Without this property, one cannot show

that the rms errors of Tef and Tep are proportional to

s2T as sT ! 0 (when s is a fixed multiple of sT). This result
would be obscured by numerical error. The discontinu-

ity of the spatial derivative would introduce an small,

but constant (in sT), error in DTf/Dt near cell bounda-

ries, which would in turn manifest as an O(sT) error in
the difference between Tp and any equilibrium estimate

(Tef, Tee, or Tep). This error would decay within a small

time (O(sT)), and hence would only exist over a small re-
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gion (again, O(sT)) of the cell. The net result would

therefore be an additional O(sT) error over an O(sT) re-
gion of the cell, and although this results only in an

additional Oðs2TÞ error in the mean, it results in an

Oðs3=2T Þ error in rms, which will dominate for sufficiently

small sT.
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